ГИДРОЛОКАЦИЯ - определение. Что такое ГИДРОЛОКАЦИЯ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ГИДРОЛОКАЦИЯ - определение

СРЕДСТВО ЗВУКОВОГО ОБНАРУЖЕНИЯ ПОДВОДНЫХ ОБЪЕКТОВ
Асдик; Сонар; Гидролокация; Эхолот; Гидроакустическая станция; Гидроакустический комплекс; Акустик
  • Эхолот
  • проекта 641Б]]
  • Рубка гидроакустика на подводной лодке [[С-56]] ([[корабль-музей]] во [[Владивосток]]е)
Найдено результатов: 16
ГИДРОЛОКАЦИЯ         
(от гидро ... и лат. locatio - размещение), определение местонахождения и скорости движения подводных объектов при помощи звуковых сигналов, излучаемых самими объектами (пассивная локация, шумопеленгация) или же в результате отражения от них специально посланных сигналов (активная локация). По скорости распространения звука в воде и промежутку времени между моментами излучения и приема звукового сигнала определяют расстояние до объекта, а по направлению прихода отраженного сигнала - направление на объект. Гидролокацию применяют для обнаружения кораблей (в частности, подводных лодок), косяков рыбы, исследования дна и т. д.
гидролокация         
ж.
Определение местоположения и скорости движения тела, находящегося под водой, с помощью отраженных от него или посланных им звуковых сигналов.
Гидролокация         
(от Гидро... и лат. locatio - размещение)

определение положения подводных объектов при помощи звуковых сигналов, излучаемых самими объектами (пассивная локация) или возникающих в результате отражения от подводных объектов искусственно создаваемых звуковых сигналов (активная локация). Под термином "Г." понимают исключительно звуковую локацию, поскольку звуковые волны являются единственным известным в настоящее время видом волн, распространяющихся в морской среде без значительного ослабления. Г. имеет большое значение в навигации для обнаружения невидимых подводных препятствий, при рыбной ловле для обнаружения косяков и отдельных крупных рыб, в океанологии как инструмент исследования физических свойств океана, картографирования морского дна, поиска затонувших судов и т.п., а также в военных целях для обнаружения подводных лодок, надводных кораблей и др. и наблюдения за ними, для определения координат целей при применении торпедного и ракетного оружия.

При пассивной локации (шумопеленгации) с помощью Шумопеленгатора определяют направление на источник звука (пеленг источника), пользуясь звуковым полем, создаваемым самим источником. При этом применяют различные методы: поворачивают приёмную акустическую антенну с острой направленностью до положения, в котором принятый сигнал имеет максимальную интенсивность (т. н. максимальный метод пеленгования); измеряют разность фаз между сигналами на выходе двух разнесённых в пространстве антенн (фазовый метод); определяют относительную разницу во времени приёма сигналов двумя разнесёнными антеннами посредством измерения взаимной корреляции (См. Корреляция) (корреляционный метод), а также путём комбинации этих методов. При пассивной локации расстояние до объекта определяют по двум или нескольким пеленгам, полученным несколькими приёмными системами, разнесёнными на расстояния, сравнимые с расстоянием до лоцируемого объекта (метод триангуляции); так определяется не только положение шумящего объекта, но и траектория его движения. Системы пассивной Г. применяются главным образом для гидроакустического оснащения подводных лодок и надводных кораблей. Пассивной Г. пользуются также при обнаружении подводных шумящих объектов с помощью распределённых береговых и донных систем звукоприёмников, данные от которых по подводному кабелю передаются на береговые системы обработки, а также с помощью системы гидроакустических радиобуев, информация от которых принимается по радиоканалу специальными самолётами, курсирующими в районе плавания буев. Кроме того, пассивное определение направления на шумящий объект является основой действия акустических самонаводящихся торпед.

Если источник звука излучает короткий звуковой импульс, то положение источника можно определить по разностям времён прихода импульсов, принятых ненаправленными приёмниками в трёх или более разнесённых по пространству пунктах. Таким способом локализации источников пользуются в береговой системе дальнего обнаружения судов, терпящих бедствие в открытом океане (система СО ФАР); источником звука при этом служит взрыв заряда, погружаемого на определенную глубину.

Системы активной Г. основаны на явлении звукового Эхо (рис.) и различаются методами временной модуляции (См. Модуляция) посылаемого сигнала и способами обзора пространства. Для определения дальности объекта чаще всего пользуются импульсной, частотной и шумовой модуляциями сигнала. При импульсной модуляции расстояние R до цели находится по времени запаздывания t0 отражённого импульса: R=ct0/2, где с - скорость распространения звука в среде. При частотной модуляции частота f излучаемого сигнала меняется со временем t по линейному закону f (t)=f0t, где f0 и γ - постоянные начальная частота и скорость изменения частоты. Поэтому отражённый сигнал, принятый приёмником, будет отличаться по частоте от сигнала, излучаемого в данный момент, т.к. принятый сигнал представляет собой задержанную на время t0 копию посланного сигнала, а частота излучаемого сигнала за время t0 изменилась согласно приведённой формуле. Для неподвижной цели разность частот будет постоянной и равной f_ = γt0. Выделив разностную частоту, определяют расстояние до цели R по формуле R=cf_/2γ. Аналогична схема действия Гидролокатора с шумовым излучением и корреляционной обработкой сигнала.

Основной характеристикой гидролокаторов является дальность обнаружения, которая зависит от мощности излучаемого сигнала, от уровня акустических помех и от условий распространения звука в водной среде. Дальность обнаружения обычно определяют по величине т. н. порогового сигнала, т. е. сигнала минимальной интенсивности, ещё различимого на фоне помех. Если помеха и сигнал независимы, то пороговый сигнал определяется отношением полной энергии полезного сигнала к мощности помехи в данном частотном интервале. Т. о., дальность обнаружения для систем с различными видами модуляции будет одинаковой, если одинакова их полная энергия излучения. Если основная помеха - хаотическое отражение сигнала от неоднородностей среды (т. н. реверберационная помеха), то пороговый сигнал не зависит от мощности излучаемого сигнала, а определяется исключительно шириной полосы его частот; в этом случае более эффективны системы с частотной модуляцией сигнала и с шумовой посылкой.

Наряду с помехами на дальность обнаружения оказывает влияние рефракция, имеющая место в сложных гидрологических условиях. Современные гидролокаторы способны обнаруживать большие отражающие объекты в среднем на расстоянии нескольких км.

Лит.: Клюкин И. И., Подводный звук, Л., 1963; Сташкевич А. П., Акустика моря, Л., 1966; Тюрин А. М., Сташкевич А. П., Таранов Э. С., Основы гидроакустики, Л., 1966.

Б. Ф. Курьянов.

Принцип работы гидролокатора: 1 - излучатель; 2 - приёмник; 3 - отражающее тело.

ГИДРОЛОКАЦИЯ         
и, мн. нет, ж., тех.
Наблюдение (обнаружение, распознавание, определение местоположения) подводных объектов с помощью специального устройства - г и д р о л о к а т о р а посредством посылки и приема звуковых сигналов; область науки и техники, изучающая методы и создающая средства для такого наблюде-ния. Гидролокационный - относящийся к гидролокации.||Ср. ПЕЛЕНГАЦИЯ, РАДИОЛОКАЦИЯ.
гидролокатор         
м.
Прибор для гидролокации.
Гидролокатор         
(от Гидро... и лат. loco - помещаю)

гидролокационная станция, гидроакустическая станция (прибор) для определения положения подводных объектов при помощи звуковых сигналов. Кроме расстояния до погруженного в воду объекта, некоторые Г. определяют также его глубину погружения по наклонной дальности и углу направления на объект в вертикальной плоскости. О методах определения Г. местоположения объекта и о применении Г. см. в ст. Гидролокация.

Работа Г. (рис.) происходит следующим образом. Импульс электрического напряжения, выработанный генератором, через переключатель "приём - передача" подаётся к электроакустическим преобразователям (вибраторам), излучающим в воду акустический импульс длительностью 10-100 мсек в определенном телесном угле или во всех направлениях. По окончании излучения вибраторы подключаются к гетеродинному усилителю для приёма и усиления отражённых от объектов импульсных акустических сигналов. Затем сигналы поступают на индикаторные приборы: рекордер, электродинамический громкоговоритель, телефоны, электроннолучевую трубку (ЭЛТ). На рекордере измеряется и регистрируется электрохимическим способом на ленте расстояние (дистанция) до объекта; с помощью телефонов и электродинамического громкоговорителя принятые сигналы прослушиваются на звуковой частоте и классифицируются, по максимуму звучания определяется пеленг; на ЭЛТ высвечивается сигнал от объекта и измеряется дистанция до него и направление (пеленг). Длительность паузы между соседними посылками импульсов составляет несколько сек.

По способу поиска объекта различают Г. шагового поиска, секторного поиска и кругового обзора. При шаговом поиске и пеленговании по максимуму сигнала акустическую систему поворачивают в горизонтальной плоскости на угол 2,5-15°, делают выдержку (паузу), равную времени прохождения импульсом пути от Г. до объекта, находящегося на максимально возможной дальности, и от объекта до Г., а затем производят следующий поворот. При пеленговании фазовым методом акустическую систему выполняют в виде двух раздельных систем, переключаемых бесконтактным коммутационного устройством из режима излучения в режим приёма и обратно. Суммарные и разностные сигналы, снятые с двухканального компенсатора, после усиления и сдвига по фазе подводятся к ЭЛТ и рекордеру, где отсчитывается дистанция. Этот способ характеризуется сравнительно высокой точностью пеленгования, большим (несколько мин) временем обследования водного пространства и возможностью слежения лишь за одним объектом. При секторном поиске акустическая энергия излучается одновременно в определенном секторе, а приём и пеленгование отражённых сигналов производятся при быстром сканировании характеристики направленности в пределах этого сектора. При наиболее распространённом круговом обзоре осуществляют ненаправленное (круговое) излучение и направленный (в пределах узкой вращающейся диаграммы направленности) приём, что обеспечивает обнаружение и пеленгование всех окружающих Г. объектов. Акустическая система (антенна) такого Г. выполняется в виде цилиндра или сферы, состоящих из большого количества отдельных вибраторов, и размещается в подъёмно-опускном устройстве или в стационарном обтекателе. К преимуществам этого способа относятся быстрое обследование всего горизонта, возможность обнаруживать и следить за несколькими объектами.

Большинство Г. работает в звуковом и ультразвуковом диапазонах частот (4-40 кгц). Это обусловлено необходимостью получения острой направленности антенны (при относительно небольших её размерах) и достижения заданной разрешающей способности. Г. различного назначения обладают дальностью действия от сотен метров до десятков километров и обеспечивают точность пеленгования около 1°. Для уменьшения неблагоприятного влияния гидрологических факторов (см. Гидроакустика) на дальность действия применяют Г. с акустической системой, помещенной в контейнер, буксируемый кораблём на глубине несколько десятков м (Г. с переменной глубиной погружения).

С. А. Барченков.

Блок-схема гидролокатора: 1 - акустическая система; 2 - обтекатель; 3 - поворотное устройство; 4 - коммутационное устройство; 5 - импульсный генератор; 6 - усилитель; 7 - рекордер; 8 - электродинамический громкоговоритель; 9 - телефоны; 10 - отметчик (электроннолучевая трубка).

ЭХОЛОТ         
прибор для измерения глубины воды электроакустическим способом.
ГИДРОЛОКАТОР         
(сонар), аппаратурный комплекс для определения с помощью акустических сигналов положения подводных и плавучих объектов (первоначально этот термин использовался применительно к эхолокационным приборам для обнаружения подводных лодок, теперь употребляется в более широком значении). Главными элементами гидролокатора являются подводный излучатель мощного акустического сигнала и чувствительный приемник, реагирующий даже на слабые отражения этого сигнала от погруженных в воду объектов. Конструируются оба эти элемента с таким расчетом, чтобы их компоновка в локаторе обеспечивала определение направления на отражающий объект и расстояния до него. На подводных лодках и надводных судах гидролокаторы служат основными - а зачастую и единственными - средствами сбора информации об условиях и обстоятельствах под морской поверхностью. На атомных подводных лодках специальные гидролокаторы применяются в качестве навигационных приборов. Крупные корабли оснащаются эхолотами - гидролокаторами, измеряющими глубину океана. На многих рыбопромысловых судах гидролокаторы используют для обнаружения рыбных косяков; биологи, занимающиеся морскими животными, с помощью гидролокаторов изучают звуки, издаваемые представителями морской фауны.
Под водой акустический пучок, подобно лучу прожектора или радара в воздухе, наводится на цель, и отраженная от нее звуковая энергия поступает в приемник. Из сонара, как из радара, излучение испускается короткими импульсами. Расстояние до цели определяется как произведение скорости звука в воде на половину временного интервала между испусканием импульса и прибытием его эха. Поскольку приемная антенна сонара имеет острую диаграмму направленности, пеленг цели определяется поворотом микрофона при его настройке на эхо. На практике оператор следит за световыми метками на панорамном экране, которые соответствуют обнаруженным объектам, и это значительно облегчает их локацию. Дальность действия гидролокатора ограничена радиусом в несколько километров. Скорость звука в воде равна приблизительно 1,5 км/с, поэтому гидролокационный поиск гораздо медлительней радиолокационного или светового поиска в атмосфере. Из-за относительно большой длины волны звука у гидролокатора довольно слабое пространственное разрешение: там, где глаз различал бы каждую заклепку на корпусе корабля, сонар "увидит" только все судно как единое пятно. К тому же морская вода - далеко не идеальная среда для распространения звука.
Идея гидролокатора не нова. Еще во время Первой мировой войны гидрофоны применялись на надводных кораблях и подводных лодках для обнаружения вражеских судов методами пассивной шумопеленгации. Позже были созданы пьезоэлектрические преобразователи и электронные усилители сигналов звукового диапазона, что привело к развитию систем активной гидролокации. С тех пор разработано много видов совершенных приборов, среди них гидролокатор кругового обзора, гидролокатор переменной глубины и др.
Устройство гидролокатора. Гидролокаторы делятся на два основных типа: активные (излучающие сигнал и принимающие его отражение) и пассивные (принимающие шумы, издаваемые целью). Рассмотрим здесь блок-схему активного гидролокатора кругового обзора (рис. 1).
Преобразователь представляет собой устройство, в котором электрическая энергия преобразуется в механическую и наоборот. Такими преобразователями являются, например, микрофоны и громкоговорители. В гидролокаторе преобразователь исполняет обе функции. Обычно он размещается на днище надводного корабля и в верхней части корпуса подводной лодки. Иногда преобразователями служат пьезоэлектрические кристаллы (они меняют свои размеры при подаче на них электрического напряжения либо меняют форму при воздействии внешних сил, и на их поверхности возникает разность электрических потенциалов), но в данной схеме используется магнитострикционный (одновременно магнитоупругий) элемент - никелевый стержень с намотанной на него проволочной катушкой индуктивности. При нарастании электрического тока в катушке возникает магнитное поле, сжимающее стержень, при убывании тока - поле, растягивающее его. На конце стержня закреплена диафрагма, соприкасающаяся с водой, поэтому при сокращениях и удлинениях стержня в воде возбуждаются упругие колебания - звуковые волны. По прибытии эха все происходит в обратном порядке, и движения диафрагмы возбуждают ток в катушке. Набор таких преобразователей располагается по кругу в горизонтальной плоскости; каждый из них ориентирован в своем направлении. Передатчик воздействует на все преобразователи одновременно, и звуковые волны уходят сразу во всех направлениях. Но каждый преобразователь соединен с приемником отдельно, поэтому направление на цель определяется по тому элементу, который "слышит" эхо.
Передатчик. Оператор сидит за пультом управления, контролируя работу передатчика - мощного генератора ультразвуковых импульсов (средняя мощность типичного передатчика - ок. 8 кВт, пиковая в импульсе достигает 160 кВт). Несущая частота передатчика фиксирована ок. 20 кГц, а длительность импульса может меняться оператором от 0,005 до 0,1 с. Частота повторения импульсов тоже может варьироваться от 1 до 60 имп/мин - в зависимости от максимальной величины радиуса зоны обзора (все эхо-сигналы должны быть приняты до момента посыла следующего импульса). Выбор частоты передатчика зависит от нескольких величин, влияние которых противоположно: с увеличением частоты возрастают потери на трассе, но интенсивность принимаемых собственных шумов воды и габариты преобразователя становятся меньше. Из этих соображений наиболее выгодным диапазоном эхолокации является полоса частот от 18 до 24 кГц. Акустические устройства шумопеленгации наиболее эффективно работают на частотах ниже 1 кГц, на которых наиболее мощно излучаются шумы кораблей. Выходная мощность передатчика ограничивается сверху тем ее значением, при котором в воде возникает кавитация (см. КАВИТАЦИЯ). Кавитационные пузырьки незамедлительно отражают в преобразователь существенную долю излучаемой мощности. С увеличением давления (т.е. глубины) возрастает и допустимый предел излучаемой акустической мощности.
Реле приема-передачи. Так как один и тот же преобразователь выступает в роли излучателя и чувствительного элемента, его следует автоматически подключать то к передатчику, то к приемнику.
Приемник. Принимаемые различными чувствительными элементами сигналы раздельно поступают в приемно-усилительный тракт, а оттуда - на коммутатор. В приемном тракте есть специальные схемы подавления паразитных сигналов.
Коммутатор. Здесь принятый сигнал направляется по двум раздельным каналам - слухового контроля и видеоиндикации. Сегменты статора (неподвижной части коммутатора) расположены по кругу; на каждый из них поступает сигнал от определенного преобразователя. Положением первого ротора (с выходом на аудиоканал) управляет оператор, выбирая интересующее его направление прослушивания; гетеродинный конвертер канала слухового контроля переводит принятый сигнал на звуковую частоту 800 Гц и посылает его в головные телефоны оператора. Второй ротор коммутатора, связанный с видеоканалом, вращается с постоянной скоростью 1750 об/мин синхронно с разверткой индикатора кругового обзора, подобно тому как это делается в радаре, и позволяет визуализировать каждый эхо-сигнал с его пеленгом. За время между посылами двух последовательных импульсов зондирования развертка совершается дважды, так что все принятые отражения выводятся на экран индикатора (рис. 2).
Регистрирующий индикатор кругового обзора. Представляет собой электронно-лучевую трубку с круговой разметкой экрана, на котором отмечаются все обнаруженные объекты вблизи производящего гидролокацию корабля (ему соответствует круговое пятно в центре экрана). Поскольку отражения от более удаленных целей принимаются позже, развертка ведется по разворачивающейся спирали со скоростью 1 оборот в 1/1750 мин, и на том месте экрана, которое соответствует положению цели, возникает яркое световое пятно. Вращающаяся визирная линия и круговая шкала в 360. позволяют оператору определять истинный пеленг каждой цели. Кроме того, на экране имеется индекс дальности - маленькое световое пятно, которое оператор может вводить на экран для совмещения с изображением цели. Этот индекс связан с автоматическим счетчиком, вычисляющим расстояние до объекта. Выделяя на коммутаторе интересующее его направление, оператор по каналу слухового контроля оценивает характер конкретного эха и его происхождение - от косяка ли рыбы или подводной лодки, либо в результате подводной реверберации. Заодно можно оценить и направление движения цели, так как частота звука от приближающегося объекта выше, а от удаляющегося - ниже. См. также ДОПЛЕРА ЭФФЕКТ
.
Блок обработки данных, куда поступает вся первичная информация о цели, вносит поправки с учетом условий распространения звука и движения самого судна с гидролокатором и выдает результаты расчетов дальности, пеленга, курса и скорости цели (необходимые, например, при наведении орудий боевого корабля).
Гидролокационные устройства. Гидрофоны представляют собой подводные аналоги микрофонов и используются при прослушивании шумов, исходящих от цели. На подводных лодках они служат средствами поиска и обнаружения противника чаще, чем гидролокаторы активного типа, так как при излучении локационного сигнала подводная лодка может обнаружить себя. Гидрофоны размещают по дну на входе в гавань; от них по кабелям сигналы поступают на наземные станции обработки, благодаря чему осуществляется постоянный контроль движения надводных и подводных судов в районе порта. Гидрофоны имеют ограниченные возможности, т.к. с их помощью нельзя непосредственно определить удаленность объекта; можно лишь установить направление на него.
Гидролокатор с острой диаграммой направленности, излучая сигналы и принимая их отражения, обнаруживает цели и измеряет их дальности и пеленги. Поиск ведется последовательными шагами: оператор наводит преобразователь на заданное направление, посылает импульс и ждет его отражение; потом переходит на другой пеленг и повторяет все снова - и так до тех пор, пока не проверит всю зону обзора.
Гидролокатор кругового обзора дает результаты гораздо быстрее (он рассмотрен выше при описании блок-схемы рис. 1).
Аппаратура для определения глубины погружения цели работает совместно с активным гидролокатором, поскольку не имеет своего передатчика и лишь воспринимает отражения сигналов, испущенных активным прибором. Набор остронаправленных преобразовательных элементов этой аппаратуры имеет вид вертикальной линейки, сканируя которую получают в угловой мере данные о погружении цели; эта информация в совокупности с результатами измерений традиционных угломерных приборов позволяет определить глубину и дальность цели.
Опускаемый с вертолета гидролокатор представляет собой преобразователь сферической формы, который спускается на длинном кабеле и погружается в воду при зависании вертолета; верхний конец кабеля соединен с бортовой аппаратурой. Такой гидролокатор служит для экстренного ненаправленного прослушивания эхо-сигналов в заданном районе.
Береговая станция акустической пеленгации и обработки эхо-сигналов получает информацию от системы погруженных в различных местах гидрофонов, определяет пеленги удаленных объектов и расстояния до них.
Гидролокатор переменной глубины, подобно вертолетному прибору, погружается на кабеле (но с борта надводного корабля и для решения иных задач) глубже сильно искажающего процесс распространения звуковых волн термоклина (слоя воды в океане с большим градиентом температуры), чем исключаются рефракционные потери при определении дальности объекта.
Гидроакустические радиобуи - система плавучих устройств, каждое из которых несет на себе гидрофон и радиопередатчик индивидуальной частоты. Разбросанные с самолета в заданном районе, они посылают сигналы о присутствии, например, подводной лодки, сопоставление которых дает информацию о приблизительном ее местонахождении.
Эхолот является упрощенным вариантом гидролокатора с острой диаграммой направленности, ориентированной на морское дно. Временная картина отраженных от дна звуковых сигналов автоматически регистрируется в цифровой или аналоговой форме (или в обеих одновременно) на карте.
Гидроакустический телефон - своеобразный подводный аналог радиотелефона. Промодулированные голосом импульсы на ультразвуковой несущей частоте распространяются в воде и принимаются судном, где они детектируются и подаются в телефонную трубку. Такая система используется для связи подводных лодок между собой и с надводными кораблями.
Береговая система дальнего обнаружения судов, терпящих бедствие (т.н. система СОФАР), функционирует благодаря сверхдальнему распространению звука (до нескольких тысяч километров от источника) по подводному звуковому каналу (см. ниже). Если в звуковом канале взорвать заряд, то по звуковому импульсу можно определить положение его источника, измеряя разность времен прихода импульсов, принятых ненаправленными приемниками в трех далеко отстоящих друг от друга пунктах. Бомбами для подачи подобных сигналов бедствия снабжаются подводные лодки и надувные спасательные плоты.
Акустические системы самонаведения торпед являются по сути активными или пассивными гидролокационными устройствами для обнаружения и преследования цели; порой они оснащены и неконтактными гидроакустическими взрывателями.
См. также:
Эхолот         
(от Эхо и Лот)

навигационный прибор для автоматического измерения глубины водоёмов с помощью гидроакустических эхо-сигналов. Обычно в днище судна устанавливается вибратор, к которому периодически подаются от генератора электрические импульсы, преобразуемые им в акустические, распространяющиеся в ограниченном телесном угле вертикально вниз. Отражённый дном акустический импульс принимается тем же вибратором, который преобразует его в электрический. После усиления импульс поступает на индикатор глубины, отмечающий отрезок времени (в сек) от момента посылки импульса до момента возвращения эхо от дна и преобразующий его в визуальные показания или запись глубины h = сτ/2 в м, где скорость звука с = 1500 м/сек. Длительность импульсов - от 0,05 до 20 мсек с частотой заполнения от 10 до 200 кгц. Малые длительности и высокие частоты используются при измерениях малых глубин, большие длительности и низкие частоты - при измерении больших глубин. Вибратором может служить магнитострикционный преобразователь или пьезокерамический. В качестве индикаторов глубин применяются проблесковые указатели с вращающейся неоновой лампочкой, вспыхивающей в момент приёма эхо-сигнала; стрелочные, электроннолучевые и цифровые указатели, а также самописцы, записывающие измеряемые глубины на движущейся бумажной ленте электротермическим или электрохимическим методом. Э. изготовляются на разные интервалы глубин, в пределах от 0,1 до 12 000 м и работают при скоростях хода судна до 30 узлов (55 км/ч) и даже более. Погрешность Э. от 1\% до сотых долей процента. Э. используются также для поиска косяков рыбы, подводных лодок, для исследования звукорассеивающих слоев, определения типа грунта, стратификации донных осадков и др. гидроакустических измерений. См. Гидроакустика.

Лит.: Федоров И. И., Навигационные эхолоты, М. - Л., 1948; его же, Эхолоты и другие гидроакустические средства, Л., 1960; Толмачев Д., Федоров И., Навигационные эхолоты, "Техника и вооружение", 1977, № 1.

И. И. Федоров.

Гидроакустическая станция         

совокупность схемно и конструктивно связанных акустических, электрических и электронных приборов и устройств, с помощью которых производится приём или излучение либо приём и излучение акустических колебаний в воде.

Различают Г. с. только принимающие акустическую энергию (пассивного действия) и приёмоизлучающие (активного действия). Г. с. пассивного действия [Шумопеленгатор (рис. 1, а), Г. с. разведки, Звукометрическая станция и др.] служат для обнаружения и определения направления (пеленга) на шумящий объект (движущийся корабль, Г. с. активного действия и др.) по создаваемым объектом акустическим сигналам (шумам), а также для прослушивания, анализа и классификации принятых сигналов. Пассивные Г. с. обладают скрытностью действия: их работу нельзя обнаружить. Г. с. активного действия [Гидролокатор (рис. 1, б), рыболокатор, Эхолот и др.] применяют для обнаружения, определения направления и расстояния до объекта, полностью или частично погруженного в воду (подводной лодки, надводного корабля, айсберга, косяка рыбы, морского дна и т.д.). Достигается это посылкой кратковременных акустических импульсных сигналов в определённом или во всех направлениях и приёмом (во время паузы между посылками их) после отражения от объекта. Активные Г. с. способны обнаруживать как шумящие, так и не шумящие объекты, движущиеся и неподвижные, но могут быть обнаружены и запеленгованы по излучению, что является некоторым их недостатком. К активным Г. с. также относят станции звукоподводной связи (См. Звукоподводная связь), гидроакустические маяки (См. Гидроакустический маяк), гидроакустические Лаги, эхолёдомеры и др. акустические станции и приборы. Подробнее о методах пеленгования и определения местоположения см. в ст. Гидроакустика и Гидролокация.

Основными частями пассивных Г. с. являются: акустическая система (антенна), компенсатор, усилитель, индикаторное устройство. Активная Г. с., кроме того, имеет также генератор и коммутационное устройство, или переключатель "приём - передача".

Акустическая система Г. с. составляется из многих электроакустических преобразователей (Гидрофонов - у принимающих Г. с., вибраторов - у приёмоизлучающих Г. с.) для создания необходимой характеристики направленности приёма и излучения. Преобразователи размещаются (в зависимости от типа и назначения Г. с.) под днищем корабля на поворотно-выдвижном устройстве или в стационарном обтекателе, проницаемом для акустических колебаний, встраиваются в наружную обшивку корабля, монтируются в буксируемом кораблём или опускаемом с вертолёта контейнере, устанавливаются поверх опорной конструкции на дне моря. Компенсатор вносит в переменные токи, протекающие в электрических цепях разнесённых друг от друга гидрофонов, сдвиг фаз, эквивалентный разности времени прихода акустических колебаний к этим гидрофонам. Численные значения этих сдвигов показывают угол между осью характеристики направленности неподвижной акустических системы и направлением на объект. После усиления электрические сигналы подаются на индикаторное устройство (телефон или электроннолучевую трубку) для фиксирования направления на шумящий объект. Генератор активной Г. с. создаёт кратковременные электрические импульсные сигналы, которые затем излучаются вибраторами в виде акустических колебаний. В паузах между ними отражённые от объектов сигналы принимаются теми же вибраторами, которые на это время присоединяются переключателем "приём-передача" к усилителю электрических колебаний. Расстояние до объектов определяется на индикаторном устройстве по времени запаздывания отражённого сигнала относительно прямого (излучаемого).

Г. с., в зависимости от их типа и назначения, работают на частотах инфразвукового, звукового и (чаще) ультразвукового диапазонов (от десятков гц до сотен кгц), излучают мощность от десятков вт (при непрерывном генерировании) до сотен квт (в импульсе), имеют точность пеленгования от единиц до долей градуса, в зависимости от метода пеленгования (максимальный, фазовый, амплитудно-фазовый), остроты характеристики направленности, обусловленной частотой и размерами акустические системы, и способа индикации. Дальность действия Г. с. лежит в пределах от сотен метров до десятков и более км и в основном зависит от параметров станции, отражающих свойств объекта (силы цели) или уровня его шумового излучения, а также от физических явлений распространения звуковых колебаний в воде (рефракции и реверберации) и от уровня помех работе Г. с., создаваемых при движении своего корабля.

Г. с. устанавливают на подводных лодках, военных надводных кораблях (рис. 2), вертолётах, на береговых объектах для решения задач противолодочной обороны, поиска противника, связи подводных лодок друг с другом и с надводными кораблями, выработки данных для пуска ракето-торпед и торпед, безопасности плавания и др. На транспортных, промысловых и исследовательских судах Г. с. применяют для навигационных нужд, поиска скоплений рыбы, проведения океанографических и гидрологических работ, связи с водолазами и др. целей.

Лит.: Карлов Л. Б., Шошков Е. Н., Гидроакустика в военном деле, М., 1963; Простаков А. Л., Гидроакустика в иностранных флотах, Л., 1964; его же, Гидроакустика и корабль, Л., 1967; Краснов В. Н., Локация с подводной лодки, М., 1968; Хортон Дж., Основы гидролокации, пер. с англ., Л., 1961.

С. А. Барченков.

Рис. 1. Упрощённая блок-схема гидроакустической станции: а - шумопеленгатора (1 - неподвижная акустическая система, 2 - компенсатор, 3 - усилитель, 4 - индикаторное устройство); б - гидролокатора (1 - подвижная акустическая система, 2 - обтекатель, 3 - поворотное устройство, 4 - переключатель "приём-передача", 5 - генератор, 6 - усилитель, 7 - индикаторное устройство).

Рис. 2. Схема работы гидроакустических станций надводного корабля: 1 - преобразователь эхолота; 2 - пост гидроакустиков; 3 - преобразователь гидролокатора; 4 - обнаруженная мина; 5 - обнаруженная подводная лодка.

Википедия

Гидролокатор

Гидролока́тор, сона́р (англ. sonar, аббр. от SOund Navigation And Ranging) — средство звукового обнаружения подводных объектов с помощью акустического излучения.

Что такое ГИДРОЛОКАЦИЯ - определение